SYLLABUS

LAST REVIEW	Fall 2022	
COURSE TITLE	Alternative Energy Sources (Solar, Wind)	
COURSE NUMBER	BEMT 0280	
DIVISION	Career and Technical Education	
DEPARTMENT	ELET	
CIP CODE	46.0401	
CREDIT HOURS	2	
CONTACT HOURS/WEEK	Class: 1	Lab: 2
PREREQUISITES	None	

COURSE DESCRIPTION

Students will have the opportunity to install manual and magnetic starters and contactors. The photoelectric and proximity controls and controls for agricultural and commercial equipment will be studied.

PROGRAM LEARNING OUTCOMES

Students will demonstrate an adherence to safety standards and proficiency in the installation or repair of residential electrical, plumbing, HVAC, exterior building materials, roofing, irrigation systems, landscape/hardscape, concrete placement and finish, masonry install and repair.

TEXTBOOKS

http://kckccbookstore.com/

METHOD OF INSTRUCTION

A variety of instructional methods may be used depending on content area. These include but are not limited to lecture, multimedia, cooperative/collaborative learning, labs and demonstrations, projects and presentations, speeches, debates, panels, conferencing, performances, and learning experiences outside the classroom. Methodology will be selected to best meet student needs.

COURSE OUTLINE

- I. Photovoltaic
 - A. Introduction to Photovoltaic (PV) Systems
 - i. Historical Development of PV
 - ii. Overview of PV usage in the world
 - B. Solar energy potential for PV
 - i. Irradiance

- ii. Solar Radiation and spectrum of sun
- iii. Geometric and atmospheric effects on sunlight
- C. Photo Voltaic Effect
 - i. Conversion of solar energy into electrical energy
 - ii. Behavior of Solar cells
- D. Solar cell's Basic structure and characteristics
 - i. Single-Crystalline
 - ii. Multi-Crystalline
 - iii. Thin Film silicon solar cells
 - iv. Emerging new technology
- E. Electrical Characteristics of the solar cell
 - i. Equivalent Circuit
 - ii. Modeling of solar cells including the effects of temperature
 - iii. Irradiation and series/shunt resistances on the open circuit voltage and short circuit current
- F. Solar Cell Arrays
 - i. PV Models
 - ii. PV Generators
 - iii. Shadow effects and bypass diodes
 - iv. Hot spot problem in PV module and safe operating area
 - v. Terrestrial PV Mode modeling
- G. Interfacing PV Models to loads
 - i. Direct connection of loads to PV modules
 - ii. Connection of PV modules to a battery and load together
- H. Energy Storage Alternatives for PV systems
 - i. Storage batteries
 - ii. Lead acid
 - iii. Nickel-Cadmium
 - iv. Nickel-Metal-Hydride
 - v. Lithium type batteries
 - vi. Small storage systems employing ultra-capacitors
 - vii. Charging and discharging properties of and modeling of batteries
- I. Power conditioning and max power point tracking (MPPT) algorithms
 - i. Based on buck and boost converter technology
- J. Maximum power point tracking (MPPT) algorithms
- K. Inverter control topography for stand-alone and grid connected operations
 - i. Analysis of inverter at fundamental frequency and at switching frequency
 - ii. Feasible operation region of inverter at different power factor values for grid-connected system
- L. Stand-alone PV systems
 - i. Consumer applications
 - ii. Residential systems
 - iii. PV water pumping

- iv. PV Powered lighting
- v. Rural electrification
- M. Grid Connected (Utility Interactive) PV systems
 - i. Active power filtering with real power injection
- N. Modeling and simulation of stand-alone and grid-connected PV systems.
- II. Wind Power Generation
 - A. Introduction
 - B. Historical Perspectives on Wind Turbines
 - i. Windmills and Wind Turbines
 - ii. Global Installations
 - iii. Case Study Aermotor Windmill
 - C. Wind Energy System Components
 - i. Blades, Hub, nacelle
 - ii. Gearbox, generator, breaks
 - iii. Tower, foundation, control system
 - D. Turbine Design
 - i. Review of Fluid Concepts
 - ii. Aerodynamics and wind machines
 - iii. Blade Design
 - E. Mechanics and Dynamics
 - i. Drivetrain Components
 - ii. General Principles Primer (stress, strain, vibrations)
 - iii. Rotor Dynamics
 - F. Electrical Aspects of Wind Turbines
 - i. Electrical Fundamentals
 - ii. Electrical Machines
 - iii. Power Converters and Ancillary Equipment
 - G. Fatigue and Wind Turbine Design
 - i. Primer on Fatigue
 - ii. Fatigue in Wind Systems
 - iii. Wind Turbine Design Process
 - H. Wind Turbine Control
 - i. Control Primer
 - ii. Wind Turbine Model
 - iii. System Monitoring
 - I. Wind Energy System Economics
 - i. Engineering Economic Basics
 - ii. Wind Turbine Cost Analysis
 - J. Wind Farm Feasibility Study
 - i. Wind Turbine Siting
 - ii. Environmental and Wildlife impacts
 - iii. Noise Issues
 - K. Conclusion

COURSE LEARNING OUTCOMES

Upon successful completion of this course, the student will:

- A. Follow manufacturer's instructions and diagrams and install manual and magnetic starters and contactors.
- B. Follow manufacturer's instructions and diagrams and install photoelectric controls.
- C. Follow manufacturer's instructions and diagrams and install proximity controls.
- D. Install controls for commercial equipment.
- E. Define common abbreviations.
- F. Explain devices and symbols.
- G. Use control circuit schematic components.
- H. Explain magnetic control.
- I. Use lighting contractors.
- J. Overloads, magnetic starters two wire circuits.
- K. Light-up pilot lights.
- L. Use multiple pushbuttons.
- M. Explain selector switches.
- N. Use reversing controls three phases.
- O. Explain reversing controls garage door single phase.
- P. Use three phase motors-wye and delta configurations.
- Q. Use dual voltage three phase motors.

ASSESSMENT OF COURSE LEARNING OUTCOMES AND COMPETENCIES

Student progress is evaluated through both formative and summative assessment methods. Specific details may be found in the instructor's course information document.

COLLEGE POLICIES AND PROCEDURES

Student Handbook https://www.kckcc.edu/files/docs/student-resources/student-handbook-and-code-ofconduct.pdf

College Catalog https://www.kckcc.edu/academics/catalog/index.html

College Policies and Statements https://www.kckcc.edu/about/policies-statements/index.html

Accessibility and Accommodations <u>https://www.kckcc.edu/academics/resources/student-accessibility-support-</u> services/index.html.