COURSE SYLLABUS

LAST REVIEW	Fall 2022	
COURSE TITLE	Heat Pump Systems	
COURSE NUMBER	HVAC 0203	
DIVISION	Career and Technical E	ducation
DEPARTMENT	HVAC	
CIP CODE	47.0201	
CREDIT HOURS	3	
CONTACT HOURS/WEE	K Class: 1	Lab: 4
PREREQUISITES	HVAC 0100	

COURSE DESCRIPTION

(GREEN TECHNOLOGY) This course will cover the fundamentals of heat pump systems. This will include reverse-cycle refrigeration, four-way valves, ground source heat pumps, water source heat pumps, air source heat pumps, refrigerant line identification, types of metering devices, and liquid-line accessories. Installation and troubleshooting will also be covered.

PROGRAM ALIGNMENT

This course is part of a program aligned through the Kansas Board of Regents and Technical Education Authority. For more information, please visit: https://kansasregents.org/workforce_development/program-alignment

PROGRAM LEARNING OUTCOMES

- 1. The student will be able to demonstrate the ability to perform HVAC procedures in a safe manner
- 2. The student will be able to classify the different needs of equipment and summarize a solution.
- 3. The student will be able to exhibit a high level of professionalism including appropriate dress, attendance, communication skills and other soft skills necessary.

TEXTBOOKS

http://kckccbookstore.com/

METHODS OF INSTRUCTION

A variety of instructional methods may be used depending on content area. These include but are not limited to: lecture, multimedia, cooperative/collaborative learning, labs and demonstrations, projects and presentations, speeches, debates, panels,

conferencing, performances, and learning experiences outside the classroom. Methodology will be selected to best meet student needs.

COURSE OUTLINE

- I. Air Source Heat Pump
 - A. Reverse Cycle Refrigeration
 - 1. Heat Pumps
 - 2. Four way valve
 - B. The Four Way Valve
 - C. Types of Heat Pumps
 - 1. Water to air heat pumps
 - 2. Removing heat from the ground
 - 3. Air to air heat pump
 - D. Metering Devices
 - E. Thermostatic Expansion Valves (TXV)
 - F. Liquid Line Accessories
 - G. Auxiliary Heat
 - H. Balance Point
 - I. Coefficient of Performance (COP)
 - J. Defrost Cycle
 - 1. Initiating the defrost cycle
 - 2. Terminating the defrost cycle
 - 3. Electronic control of defrost
- II. Geothermal Heat Pumps
 - A. Geothermal Heat Pumps Classifications
 - B. Open Loop Systems
 - C. Closed Loop Systems
 - D. Earth Coupled Systems
 - E. Systems Materials and Heat Exchange Fluids

COURSE LEARNING OUTCOMES AND COMPETENCIES

Upon successful completion of this course, the student will:

- A. Demonstrate an understanding of a four way valve.
 - 1. demonstrate reverse refrigerant flow
 - 2. demonstrate whether the unit is in the heating or cooling mode.
- B. List the components of a reverse cycle heat pump.
 - 3. Explain an Indoor Coil
 - 4. Explain an Outdoor Coil
 - 5. Demonstrate Bi-flow Filter-Drier
 - 6. Demonstrate a Four-Way Valve
 - 7. Demonstrate Accumulator.
 - 8. Demonstrate a Compressor.
 - 9. Demonstrate the Defrost Cycle.
 - 10. Demonstrate the Outdoor Fan Motor.
 - 11. Demonstrate the Indoor Fan Motor.
- C. List the sources of heat for various heat pumps.
 - 12. Explain an Air to air heat pump.
 - 13. Explain a Water to air heat pump.
 - 14. Explain a Ground Source heat pump.
 - 15. Explain a Solar heat source.
- D. Demonstrate an understanding of heat pump terminology.
 - 16. Explain Coefficient of Performance (COP)
 - 17. Demonstrate Emergency Heat Back up source of heat
 - 18. Demonstrate Defrost Cycle Timed or Temperature
 - 19. Explain Balance Point Heat loss is greater than heat supplied.
 - 20. Demonstrate Four-Way Valve Reverses flow of refrigerant in system.
 - 21. Explain Energy Savings Electricity is cheaper than natural gas.
- E. Demonstrate an understanding of coefficient of performance and auxiliary heat.
 - 22. Explain Coefficient of Performance When a heat pump is pumping in exactly as much heat as the building is leaking out.
 - 23. Explain Coefficient of Performance for a heat pump is 4 to 1 ratio.
 - 24. Demonstrate Auxiliary heat A back up source of heat for when the heat pump becomes less efficient.
 - 25. Demonstrate gas heat back up.
 - 26. Demonstrate electric heat back up.
 - 27. Explain propane heat back up.

ASSESSMENT OF COURSE LEARNING OUTCOMES AND COMPETENCIES

Student progress is evaluated through both formative and summative assessment methods. Specific details may be found in the instructor's course information document.

COLLEGE POLICIES AND PROCEDURES

Student Handbook

https://www.kckcc.edu/files/docs/student-resources/student-handbook-and-code-ofconduct.pdf

College Catalog https://www.kckcc.edu/academics/catalog/index.html

College Policies and Statements https://www.kckcc.edu/about/policies-statements/index.html

Accessibility and Accommodations <u>https://www.kckcc.edu/academics/resources/student-accessibility-support-</u> <u>services/index.html</u>.