COURSE SYLLABUS

LAST REVIEW	Fall 2022	
COURSE TITLE	Analog Circuits	
COURSE NUMBER	ELET 0203	
DIVISION	Career and Technical Education	
DEPARTMENT	ELET	
CIP CODE	46.0302	
CREDIT HOURS	2	
CONTACT HOURS/WEEK	Class: 1	Lab: 2
PREREQUISITES	None	

COURSE DESCRIPTION

This course presents the basic concepts of electrical, electronic and digital circuits, components and theory of operation.

PROGRAM ALIGNMENT

This course is part of a program aligned through the Kansas Board of Regents and Technical Education Authority. For more information, please visit: https://kansasregents.org/workforce_development/program-alignment

PROGRAM LEARNING OUTCOMES

- 1. The Student will be able to identify workplace safety issues in accordance with OSHA standards.
- 2. Upon successful completion of this course, the student should be able to identify the job skills necessary to have a successful career in the Electrical Profession.
- 3. Inspect electrical circuit connections in accordance with the N.E.C. standards of compliance.

TEXTBOOKS

http://kckccbookstore.com/

METHOD OF INSTRUCTION

A variety of instructional methods may be used depending on content area. These include but are not limited to lecture, multimedia, cooperative/collaborative learning, labs and demonstrations, projects and presentations, speeches, debates, panels,

conferencing, performances, and learning experiences outside the classroom. Methodology will be selected to best meet student needs.

COURSE OUTLINE

- I. Ohm's Law solving for AC/DC voltage, current and resistance
- II. Resistor color codes
- III. Multi-meter measurement of AC/DC voltage, current, ohms and frequency
- IV. Grounding, interlocks, fuses, circuit breakers and tag out procedures
- V. AC vs. DC voltage and current
- VI. Induction and RL Circuits
- VII. Basic semiconductor theory
- VIII. Semiconductor Testing
 - IX. Concept of various number systems
 - X. Registers, Buses: Control, Data, Address

COURSE LEARNING OUTCOMES AND COMPETENCIES

Upon successful completion of this course, the student will:

- A. Solve basic electronic problems involving AC/DC current, voltage, resistance, and power.
 - 1. Measure current with ammeter.
 - 2. Measure voltage with voltmeter.
 - 3. Measure resistance with ohmmeter.
- B. Operate common types of test equipment in evaluating and troubleshooting circuits.
 - 4. Use a glow-tector to determine power.
 - 5. Use a megohmmeter for grounding.
 - 6. Use a Wiggins for voltage.
- C. Explain the reasons why basic electronic safety will protect the operator and the circuit.
 - 7. Demonstrate safety procedures for protection.
 - 8. Demonstrate why it is important to protect the circuit.
- D. Compare and explain the components that comprise an ac sine wave and the relationship between frequency and time.
 - 9. Draw and sine wave with time elements of each cycle.
 - 10. Distinguish differences between frequency and time.
- E. Analyze series and parallel resonate circuits and evaluate the effects of capacitive/inductive reactance and impedance.
 11. Explain resonance.

- 12. Show a graph of capacitive /inductive reactance.
- 13. Use a formula to determine impedance.
- F. Evaluate current as a carrier of information as applied to telephone applications in use today and in the future.
 - 14. Describe low voltage current for telephone applications.
- G. Identify the different types of semiconductor devices and explain their operation and applications.
 - 15. Explain diodes applications.
 - 16. Explain resistors in a circuit.
 - 17. Explain transistors in a circuit.
- H. Demonstrate the fundamental use of logic circuits.18. Explain the binary operation.19. Count in binary.
- Demonstrate the knowledge of applied digital mathematics.
 20. Calculate programmable sequence.
- J. Demonstrate the knowledge to interface analog to digital systems. 21. Explain how analog is converted to digital
- K. Define terms associated with microprocessors.
 - 22. Explain AND gates.
 - 23. Explain NOR gates.
 - 24. Explain OR gates.
- L. Construct circuits using schematic diagrams as a guide and evaluate the circuit using electronic math formulas and test equipment.
 - 25. Design a circuit to perform a task.
 - 26. Use formulas for maximum efficiency.
 - 27. Use digital multimeter.

ASSESSMENT OF COURSE LEARNING OUTCOMES AND COMPETENCIES

Student progress is evaluated through both formative and summative assessment methods. Specific details may be found in the instructor's course information document.

COLLEGE POLICIES AND PROCEDURES

Student Handbook https://www.kckcc.edu/files/docs/student-resources/student-handbook-and-codeof-conduct.pdf College Catalog https://www.kckcc.edu/academics/catalog/index.html

College Policies and Statements https://www.kckcc.edu/about/policies-statements/index.html

Accessibility and Accommodations

https://www.kckcc.edu/academics/resources/student-accessibility-supportservices/index.html.