COURSE SYLLABUS

LAST REVIEW	Spring 2021
COURSE TITLE	Organic Chemistry I
COURSE NUMBER	CHEM-0211
DIVISION	Math, Science, and Business Technology
DEPARTMENT	Chemistry
CIP CODE	24.0101
CREDIT HOURS	3
CONTACT HOURS/WEEK	Class: 3
PREREQUISITES	College Chemistry II and Lab, CHEM-0112
COURSE PLACEMENT	None

COURSE DESCRIPTION

The course covers aliphatic and aromatic compounds with emphasis on organic reactions and reaction mechanisms, nomenclature, stereoisomerism, and spectroscopy. Students should enroll in Organic Chemistry Laboratory CHEM-0213 at the same time.

TEXTBOOKS

http://kckccbookstore.com/

METHODS OF INSTRUCTION

A variety of instructional methods may be used depending on content area. These include but are not limited to the following: lecture, multimedia, cooperative/collaborative learning, labs and demonstrations, projects and presentations, speeches, debates, panels, conferencing, performances, and learning experiences outside the classroom. Methodology will be selected to best meet student needs.

COURSE OUTLINE

- I. Introduction
 - A. Definitions of organic chemistry terms
 - B. Review of general chemistry concepts
- II. Alkanes
- III. Alkenes
- IV. Alkynes
- V. Cyclic Hydrocarbons (aliphatic)
- VI. Alcohols
- VII. Spectroscopy

COURSE LEARNING OUTCOMES AND COMPETENCIES

Upon successful completion of this course, the student will:

- A. Be able to demonstrate a scientific framework of organic chemistry knowledge in the areas of aliphatic compounds, aromatic compounds, organic reactions and mechanisms, organic nomenclature, and stereochemistry.
 - 1. The student will be able to define, identify, and illustrate various functional groups: alkanes, alkenes, alkynes, cyclic hydrocarbons, aromatic hydrocarbons, halocarbons, and alcohols.
 - 2. The student will be able to demonstrate the ability to name and draw structures of chemical compounds possessing those functional groups.
- B. Be able to demonstrate a working knowledge of the fundamental concepts of organic chemistry to allow further study of chemistry.
 - 1. The student will be able to predict the outcome of organic reactions involving these functional groups under given reaction conditions.
 - 2. The student will be able to draw and show scientifically valid reaction mechanisms of organic chemical reactions.
 - 3. The student will be able to demonstrate the ability to outline syntheses of simple organic compounds.
 - 4. The student will be able to define pertinent thermodynamic and kinetic parameters associated with conformational analysis and chemical reactions.
 - 5. The student will be able to illustrate pertinent thermodynamic and kinetic parameters associated with conformational analysis and chemical reactions.
 - 6. The student will be able to discuss pertinent thermodynamic and kinetic parameters associated with conformational analysis and chemical reactions.
 - 7. The student will be able to define quantum mechanical theory to discuss the nature of chemical reactivity.
 - 8. The student will be able to illustrate quantum mechanical theory to discuss the nature of chemical reactivity.
 - 9. The student will be able to utilize quantum mechanical theory to discuss the nature of chemical reactivity.
 - 10. The student will be able to illustrate and discuss resonance and resonance structures.

- 11. The student will be able to draw and identify chiral compounds.
- 12. The student will be able to identify and define stereochemistry concepts, such as; racemate, enantiomer, diastereomer, stereoselective, stereospecific, dextrorotatory, levorotatory, and meso-isomers.
- 13. The student will be able to identify and define (*R*), (*S*).
- C. Be able to demonstrate a working knowledge of instrumentation used in organic chemistry.
 - 1. The student will be able to demonstrate an ability in theory and practice of modern instrumental methods of analysis including ultraviolet spectroscopy, infrared spectroscopy, and gas chromatographic mass spectrometry (GC/MS).

ASSESSMENT OF COURSE LEARNING OUTCOMES AND COMPETENCIES

Student progress is evaluated through both formative and summative assessment methods. Specific details may be found in the instructor's course information document.

COLLEGE POLICIES AND PROCEDURES

Student Handbook https://www.kckcc.edu/files/docs/student-resources/student-handbook-and-code-ofconduct.pdf

College Catalog https://www.kckcc.edu/academics/catalog/index.html

College Policies and Statements https://www.kckcc.edu/about/policies-statements/index.html

Accessibility and Accommodations

https://www.kckcc.edu/academics/resources/student-accessibility-supportservices/index.html.